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Ideal convergence

Definition
We say that a sequence (xn) is I-convergent to x if for every ε > 0
we have {n ∈ N : d(x , xn) > ε} ∈ I.

Observation
For the ideal Fin I-convergence is just the classical one.
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I-Schauder basis

Definition
Given an ideal I on ω, we say that a sequence (en) is I-basis if for
every x ∈ X there exists a unique sequence (αn) ∈ Kω such that
x =

∑
n,I αnen. We denote the coordinate functionals by e?n and

we set Pn :=
∑n

i=1 e?i ei .

Question (Kadets)
Are e?n continuous for the I basis? At least for nice filters, e.g. Ist?
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Proof for I = Fin

We consider the space
S := {(αn) ∈ Kω :

∑∞
n=0 αnen is convergent} equipped with the

norm |||(|||αn)|||=||| supnω ‖
∑n

i=0 αiei‖, and map T : S → X given
by T ((αn)) =

∑∞
n=0 αnen. Clearly T is a bijection. It is also

continuous. Now it remains to prove that S is a Banach space, and
use the open mapping principle. Byproduct: the norms of
projections have common bound.
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Problems with classical proof

We consider the space `2 and we let xn =
∑n

i=1 ei , where (en)
stands for standard basis. Sequence (xn) is a Ist basis, but
projections Pn related to it are not uniformly bounded.
The standard proof will not work.

Partial answer (Kochanek 2012)
If I is an ideal generated by less than p sets, then the coordinate
projections associated with I-basis are continuous.
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Outdated (from two weeks) proof - large cardinals

Theorem
We assume enough large cardinals to get that

every subset of R that is in L(R) has the Baire property,
(Shelah-Woodin)
in L(R) every linear map between Fréchet spaces (in
particular, Banach spaces) is continuous (Garnir, Wright)
every projective formula is absolute between V and L(R)
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Outdated (from two weeks) proof - the space SB

Let F(C(∆)) denote the hyperspace comprising all non-empty
closed subsets of C(∆).
Following Godefroy and Saint-Raymond, we shall call a Polish
topology τ on F(C(∆)) admissible, whenever

E+(U) ∈ τ for every open set U ⊆ C(∆),
there is a subbase B of τ such that every set U ∈ B may be
written as a union of countably many sets of the form
E+(U) \ E+(V ), where U and V are open in C(∆).

It turns out that the set SB comprising all closed linear subspaces
of C(∆) is Π0

2 in F(C(∆)) and, as such, the relative topology on
SB is Polish. Recently some other approaches to the universal
space for separable Banach spaces was made (see eg paper by
Cúth, Doležal, Doucha and Kurka).
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Outdated Main Theorem

Theorem (Kania, S.)
Under LC the coordinate functionals of I basis are continuous for
any projective filter I on N.

Main proof

∀X∈SB∀(xk)
∞
k=1∈XN

[
¬
(
∀y∈X ∃!(ak)

∞
k=1∈KN

∑
k,F

akxk = y
)
∨

∨
(
∃(Mk)

∞
k=1∈NN ∀y∈X ∃(ak)

∞
k=1∈KN

∑
k,F

akxk = y ∧ |ak | ≤ ‖y‖ · Mk
)]
.
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∏1
n. Suppose that (zk)

∞
k=1 is a sequence in X . Then,
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Modern results

Main Theorem
Let I be analytic filter on N. Then for every I-basis of a Banach
space the corresponding coordinate functionals are continuous.

Proof

e?n(x) ∈ U ⇔ ∃(αi )∈KN

∑
i,I

αiei = x ∧ αn ∈ U

⇔ ∃(αi )∈KN∀l∈N∃A∈I∀m/∈A

∥∥∥∥∥
m∑

i=1

αiei − x

∥∥∥∥∥ ≤ 1

l ∧ αn ∈ U

e?n(x) ∈ U ⇔ ∀b∈K(b ∈ U) ∨ e?n(x) 6= b
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Modern results

Main Theorem
Let I be analytic filter on N. Then for every I-basis of a Banach
space the corresponding coordinate functionals are continuous.

Theorem
Assume that all ∆1

n-sets are Baire-measureable. Let F be Σ1
n-ideal

on ω. Then for every I-basis the corresponding coordinate
functionals are continuous.

Theorem
Let I by an ideal on ω (not necessarily projective). Let (en) be an
I-basis with continuous coordinate functionals. Then there exists
an analytic ideal I ′ ⊂ I on ω such that (xn) is also an I ′-basis.
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Question

In the paper
J. Humkins, H. Woodin, Small forcing creates neither strong nor
Woodin cardinals, Proc. Amer. Math. Soc. 128 (2000),
3025–3029
We found the following result:
”After small forcing, a cardinal θ is Woodin if and only if it was
Woodin in the ground model”.
What does it mean that forcing is small? It looks like ”of
cardinality less than θ” makes sense, but if somebody knows for
sure please let me know.
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Thank you for your attention!
Gratiam vobis ago pro animis attentis!
Σας ευχαριστώγια τηνπροσοχήσας!

Dziękuję za uwagę! Děkuji za pozornost!
Danke für Ihre Aufmerksamkeit!
Grazie per l’attenzione! Merci de votre attention !
Ďakujem za vašu pozornost’!
Gracias por su atención! הדותךללעתמושתבלה Be-
dankt voor uw aandacht! Спасибо за внимание!
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